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1. Introduction

String theory remains certainly the most popular and on all appearances the best candidate

for an ultraviolet completion of the Standard Model that will unify gauge and gravitational

interactions in a consistent quantum theory. Since the discovery of Calabi-Yau compacti-

fications [1], it has been hoped that the measured properties of the Standard Model may

be understood through the details of a string compactification.

This has traditionally been approached top-down, starting with a fully specified and

globally consistent closed string compactification. The defined technical problem is to

construct a compactification whose low energy gauge group and matter content is that

of the Standard Model or a close extension. The original context of this is the weakly

coupled heterotic string on a Calabi-Yau, where the matter spectrum is determined by the

geometry of the manifold and the gauge bundles thereon. Realistic matter content requires

substantial mathematical effort; for an account of some recent developments [2] can be

consulted.

The style of top-down constructions changed with the discovery of D-branes and the

realisation that Standard-like models could also be constructed within ‘intersecting brane
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worlds’. In these scenarios the Standard Model is located on brane stacks that wrap cycles

in the internal space, with the matter content determined by the intersection numbers of

these cycles. Thus it is not just heterotic, but also (orientifolded) type II compactifications

that can give pseudo-realistic physics. Such constructions have been developed both for

toroidal orbifolds and smooth Calabi-Yaus, with a recent review being [3].

A general problem in top-down constructions is that of moduli stabilisation. The sim-

plest string compactifications have very many moduli — massless scalar fields coupling

with gravitational strength and determining the matter coupling constants. Such mass-

less particles are however inconsistent with experiment and it is necessary to generate a

potential for them. The difficulty is that moduli are associated with the geometry of the

compactification, and the effects — preeminently fluxes — that stabilise the moduli also

back-react on the geometry, making the resulting space difficult to study.

Together with the brane world picture, this has led to ‘bottom-up’ approaches to string

phenomenology [4]. As branes are localised, the field theory on them depends only on local

geometry. A bottom-up physicist first builds a local Standard Model, and only later worries

about the global embedding. The limiting case of this is ‘branes at singularities’, where

the entire low energy spectrum is determined by the nature of a pointlike singularity. In

this context there have been recent attempts to find a Standard Model singularity [5].

A characteristic of this approach is that particle physics becomes an open string theory

decoupled from the closed string dynamics associated with the compact geometry.

Regardless of the philosophy, any realistic string compactification must eventually

account for the structure of the Standard Model. In this respect moduli stabilisation

connects top-down and bottom-up constructions, as the moduli vevs determine the field

theory coupling constants. One Standard Model coupling constant in particular need of

explanation is the QCD θ angle. This is of course a well-known problem with a well-known

answer: a Peccei-Quinn axion [6]. There do exist other possibilities, reviewed in [7], but

for this paper I shall simply assume the Peccei-Quinn solution to be correct.

In the context of string theory, this creates a modulus anti-stabilisation problem. There

are many string theory axions that may in principle solve the strong CP problem. To do

so, an axion must remain massless throughout the thicket of moduli stabilisation effects

and down to the QCD scale. This problem has previously been brought up in [8, 9]. It

is clean and sharply posed, as effects very weak on the Planck scale may be very large on

the QCD scale. Given the necessity of moduli stabilisation, this question is best analysed

within the context of string constructions for which all moduli have been stabilised. The

purpose of this paper is to determine for such constructions the conditions under which a

QCD axion will exist.

The paper is organised as follows. I first review in section 2 the strong CP problem and

the ways axions can arise in different string theory constructions. Section 3 investigates how

to stabilise moduli while keeping axions sufficiently light to solve the strong CP problem.

I review some approaches to stabilising all moduli and show why their simplest versions

contain no light axions. I investigate potentials with massless axions and show that in

such cases there exist no supersymmetric minima of the potential, but nonsupersymmetric

minima may exist. I give conditions on the geometry for a QCD axion to exist, both at
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leading and higher orders in the instanton expansion. Section 4 addresses the axion decay

constant. In the context of the exponentially large volume compactifications of [10, 11] I

outline how a phenomenologically acceptable value of fa may be achieved together with

the relationship fa ∼ √
MSUSYMP .

2. Axions

2.1 Axions and the strong CP problem

In principle, the strong interactions can generate CP violation through an FF̃ coupling,

SF F̃ =
θ

16π2

∫

Fµν F̃µν . (2.1)

However, observationally θ is extremely small: |θ| < 10−8. Given that at the above level,

θ is a coupling constant which can a priori take values anywhere between 0 and 2π, this

seems unnatural. The strong CP problem is to explain this observation.

There exist several proposed resolutions. In the context of string theory and string

compactifications, the most natural is that due to Peccei and Quinn [6]. In this approach

θ is promoted to a dynamical field, with Lagrangian

L = LSM +
1

2
f2

a∂µθ∂µθ +
θ

16π2
Fµν F̃µν . (2.2)

In (2.2) fa has dimensions of mass and is known as the axion decay constant. Convention-

ally a scalar has mass dimension one, and so we redefine a ≡ θfa. This gives

L = LSM +
1

2
∂µa∂µa +

a

16π2fa
Fµν F̃µν . (2.3)

In equation (2.3) there exists an anomalous global U(1) symmetry, a → a + ε. This

symmetry is violated by QCD instanton effects, which break it to a discrete subgroup.

These generate a potential for a,

Vinstanton ∼ Λ4
QCD

(

1 − cos

(

a

fa

))

. (2.4)

In the absence of other effects, this potential is minimised at a = 0, setting the θ-angle to

zero dynamically. The mass scale for the axion a is

ma ∼
Λ2

QCD

fa
. (2.5)

(A more precise estimate replaces Λ2
QCD by fπmπ, where fπ ∼ 90MeV is the pion decay

constant.) The Peccei-Quinn symmetry is by its nature anomalous. For the axion to solve

the strong CP problem, the leading anomalous contribution to the potential must be that

of QCD instantons, otherwise the minimum will be at θ 6= 0.

Phenomenologically, fa has only a narrow window of allowed values. The smaller the

value of fa, the more strongly the axion couples to matter. The condition that supernovae
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cool by predominantly emitting energy through neutrinos (rather than axions) is equivalent

to the constraint fa > 109 GeV. There is also a cosmological upper bound on fa. The axion

field presumably starts its cosmological evolution with θ at some arbitrary value between

0 and 2π. Once the Hubble scale is comparable to the axion mass, the axion field oscillates

and the energy density stored in the axion field is diluted with the expansion of the universe.

The energy stored today thus depends on the axion mass, which is determined by fa. The

requirement that axions do not overclose the universe leads to the constraint fa < 1012 GeV,

with such axions being potential dark matter candidates.

The requirement fa < 1012 GeV follows from the assumption of a standard cosmology.

String compactifications generally have many moduli, which in supersymmetric scenarios

typically have masses m ∼ 1TeV. These can be long-lived, causing problems with nu-

cleosynthesis and giving low reheat temperatures. In supersymmetric models, the axion

always has a scalar partner (the saxion) with the associated cosmological problems. It has

been argued (in particular see [12, 13]) that the cosmological problems with the scalars are

more severe than those associated with the axion, and so the upper bound on fa should

not be taken seriously without an associated resolution of the cosmological moduli prob-

lems. [13] reports that models can be found in which both axion and saxion cosmological

problems may be evaded with fa ∼ 1015 GeV.

The cosmological history of the universe before nucleosynthesis is not known. However

we are going to assume a standard cosmology and take the upper bound on fa seriously.

This is mainly because low reheat temperatures (T ∼ 10MeV) have a generic problem

that at reheating the decaying modulus has an O(1) branching fraction to gauginos and

thus overproduces LSPs [14, 15]. In addition, low reheat temperatures make it hard to

produce the observed baryon asymmetry. This suggests the universe should be hot at

the weak scale, allowing a standard WIMP annihilation calculation and the possibility of

electroweak baryogenesis, but also imposing the standard bounds on fa. Furthermore, this

is not in obvious contradiction with the properties of the saxion — its matter coupling is

also set by fa (rather than MP ), and low values of 109 GeV < fa < 1012 GeV can easily

give large reheating temperatures T ∼ 105 GeV.

2.2 Axions in string theory

String compactifications generically contain fields ai which have aiFF̃ couplings and possess

the anomalous global symmetry a → a + ε featuring in the axionic solution to the strong

CP problem. We first enumerate possible axions, before considering their relation to the

physics of moduli stabilisation.

Axions in the heterotic string

In heterotic compactifications, the axions are traditionally divided into the universal, or

model-independent, axion and the model-dependent axions. The model-independent axion

is the imaginary part of the dilaton multiplet, S = e−2φV + ia. It is the dual of the 2-

form potential B2,µν arising from the NS-NS 2-form field: da = e−2φ ∗ dBµν . The dilaton
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superfield is the tree-level gauge kinetic function for all gauge groups:

L ∼ Re(S)

∫

F a
µνF aµν + Im(S)

∫

F a
µν F̃ aµν .

Consequently in a realistic compactification there must always exist an aFQCDF̃QCD cou-

pling.

There are also the model independent axions, bi, given by the imaginary parts of

the Kähler moduli Ti. For a basis Σi of 2-cycles of the Calabi-Yau, Ti = ti + ibi, with

ti =
∫

Σi
J the string frame volume of the cycle Σi and bi =

∫

Σi
B2. At tree level, these have

no couplings to QCD. However, such a coupling may be generated through the one loop

correction to the gauge kinetic function. For the E8×E8 heterotic string, this correction is

f1 = S + βiTi, (2.6)

f2 = S − βiTi, (2.7)

where 1 and 2 refer to the first and second E8 respectively. The βi are determined by the

gauge bundles on the compactification manifold X. For gauge bundles V1 and V2,

βi =
1

8π2

∫

ei ∧ (c2(V1) − c2(V2)) , (2.8)

where ei is the 2-form associated with the cycle Σi. This can be derived by dimensional

reduction of the Green-Schwarz term
∫

B2 ∧ X8(F1, F2,R).1 The axions associated to the

Kähler moduli are called model-dependent as their appearance in f depends on the one-loop

correction, which in turn depends on the specific properties of the compactification.

Axions in intersecting brane worlds

The discovery of D-branes [16] led to the extension of string model building beyond the

heterotic string. The type II string theories, or more properly orientifolds thereof, can

give rise to ‘intersecting brane worlds’. In these the standard model is localised on a stack

of branes while gravity propagates in the bulk. Light bifundamental matter arises from

strings located at intersection loci and stretching between brane stacks.

The bosonic action of a single Dp-brane is

Sp =
−2π

(2π
√

α′)p+1

(

∫

Σ
dp+1ξe−φ

√

det(g + B + 2πα′F ) + i

∫

Σ
eB+2πα′F ∧

∑

q

Cq

)

. (2.9)

Σ is the cycle wrapped by the brane and the sum is a formal sum over all RR potentials

in which only relevant terms are picked out.

The kinetic term FµνFµν comes from the DBI action and the instanton action F ∧ F

from the Chern-Simons term. The gauge coupling corresponds to the inverse volume of Σ

and the θ angle to the component of Cp−3 along Σ. These fields pair up to become the

scalar component of the chiral multiplet which is the gauge kinetic function of the resulting

gauge theory.

1Strictly, this only gives the correction to Im(f). The corresponding correction to Re(f) is however

implied by holomorphy.
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As IIB compactifications are our main focus, we shall be more explicit here. In princi-

ple, IIB string theory allows, consistent with supersymmetry, space-filling D3, D5, D7 and

D9-branes. However, in an orientifold setting we are restricted to either D3/D7 or D5/D9

pairs. We shall interest ourselves in the former case. The branes must wrap appropriate

cycles to cancel the negative charge and tension carried by the orientifold planes; we assume

this has been done.

In D3/D7 compactifications, the relevant superfields are those of the dilaton and Kähler

moduli multiplets. Their scalar components are2

S = e−φ + ic0, (2.10)

Ti = τi + ici. (2.11)

c0 is the Ramond-Ramond 0-form and eφ ≡ gs the string coupling. For Σi a 4-cycle of the

Calabi-Yau,

ci =
1

l4s

∫

Σi

C4 and τi =

∫

Σi

e−φ

2
J ∧ J,

where ls = 2π
√

α′ denotes the string length. Note that the Kähler modulus Ti involves the

Einstein, rather than string, frame volume of a 4-cycle. This is most simply understood as

the requirement that the gauge kinetic function be holomorphic in the chiral superfields.

Indeed, S is the universal gauge kinetic function for D3-branes, whereas Ti is the gauge

kinetic function for the field theory on a D7-brane stack wrapping the 4-cycle Σi.

The axionic couplings arise from the Chern-Simons term in the action. For D3-branes,

this gives

SF F̃ =
c0

4π

∫

F ∧ F, (2.12)

while for D7-branes

SF F̃ =
ci

4π

∫

F ∧ F. (2.13)

By expanding the DBI action, we obtain the field theory couplings

1

g2

∣

∣

∣

∣

D3

=
e−φ

2π
and

1

g2

∣

∣

∣

∣

D7

=
τi

2π
.

There exists a similar story for IIA intersecting brane worlds, where the Standard

Model must be realised on wrapped D6-branes (a Calabi-Yau has no 1- or 5-cycles to wrap

D4- or D8-branes on). The gauge coupling now comes from the calibration form Re(Ω)

and the axion from the reduction of the 3-form potential C3,

1

g2

∣

∣

∣

∣

D6

=

∫

Σi

Re(Ω) and θ

∣

∣

∣

∣

D6

=

∫

Σi

C3.

Our interest is in the interaction of axions with moduli stabilisation and supersymmetry

breaking, to which we now turn.

2Technically, this is only for the case that h
1,1
−

= 0. This will not be important for the issues we discuss,

and so we will use this simplifying assumption. The correct expressions under more general circumstances

can be found in [17, 18].
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3. Axions and moduli stabilisation

It is obvious from the above that potential axions are easily found in string compactifica-

tions; indeed, they are superabundant. For axions to solve the strong CP problem, they

must also be light, with QCD instantons giving the dominant contribution to their poten-

tial. Light axions are not in themselves problematic. Pure type II Calabi-Yau compactifica-

tions have many axions, which remain exactly massless as a consequence of four-dimensional

N = 2 supersymmetry. However, the same N = 2 supersymmetry that guarantees the ax-

ions remain massless also guarantees a non-chiral spectrum with the axions’ scalar partners

massless. These are modes of the graviton and will lead to unobserved fifth forces.

More realistic string constructions have N = 1 supersymmetry in four dimensions,

allowing a potential to be generated for the moduli. To avoid bounds from fifth force

experiments, the size moduli — the saxions — must at a minimum receive masses at a

scale mT & (100µm)−1. However, the expected scale is much larger: typical constructions

give moduli masses comparable to the supersymmetry breaking scale, and the cosmolog-

ical moduli problem [19, 20] suggests that in fact mT & 10TeV. In recent years there

has been much progress in moduli stabilisation [21, 22], with physics such as fluxes and

instantons used to lift the degeneracies associated with the geometric moduli. In the con-

text of strong CP, this same progress creates a modulus anti-stabilisation problem. There

are many stringy effects that can generate a potential for a putative QCD axion. These

include worldsheet instantons, D-instantons and gaugino condensation, all of which are

often invoked to stabilise the geometric moduli present. If any one of these effects is more

important for a given axion than QCD instantons, that axion does not solve the strong CP

problem.

Axion potentials generally come from nonperturbative effects whose magnitude is ex-

ponentially sensitive to the values of the stabilised moduli. The analysis of such effects is

therefore best performed in a context within which all moduli are stabilised, and we first

review mechanisms to achieve this. The most developed scenarios are those within IIB flux

compactifications. We will work mostly with these, although we will along the way obtain

a no-go theorem applicable to all string compactifications. IIB compactifications have the

advantage that the stabilisation of dilaton and complex structure moduli can be studied

ten-dimensionally [21], while the back-reaction of the fluxes is relatively mild: the internal

geometry simply becomes conformally Calabi-Yau.

3.1 Review of moduli stabilisation

We shall orient our subsequent discussion around two approaches to stabilising all moduli,

the well-known KKLT scenario [22] and the exponentially large volume models of [10, 11].

The point of departure is the flux compactifications of Giddings, Kachru and Polchinski [21].

These are compactifications of a IIB orientifold3 in the presence of localised sources (D3/D7

branes and O3/O7 planes) with non-vanishing 3-form flux G3 = F3 − SH3. Here F3 and

H3 are RR and NSNS 3-form fluxes with S the dilaton-axion. The fluxes generate a

3or more generally F-theory.
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superpotential [23]

W =
1

l2s

∫

G3 ∧ Ω, (3.1)

with Ω the unique holomorphic (3,0) form and the Kähler potential given by

K
M2

P

= −2 ln(V) − ln

(∫

Ω ∧ Ω̄

)

− ln(S + S̄). (3.2)

This Kähler potential is no-scale for the Kähler moduli. The dilaton and complex structure

moduli appear in the superpotential and are stabilised at leading order in the gs and α′

expansions. Their masses scale as

mS ∼ mφ ∼ N

R6
MP , (3.3)

where N is a measure of the number of units of 3-form flux and R is the Calabi-Yau radius

in units of ls.

At this level, the no-scale property implies the Kähler moduli remain unstabilised. The

dilaton and complex structure moduli are integrated out to focus on an effective theory for

the Kähler moduli. Although absent at tree level, the Kähler moduli can appear nonper-

turbatively in the superpotential through brane instantons [24] or gaugino condensation,

W = W0 +
∑

i

Aie
−aiTi , (3.4)

where ai = 2π(2π
N ) for brane instantons (gaugino condensation). The KKLT proposal is to

stabilise the Kähler moduli by solving DTiW = 0 for all i. The resulting 4-cycle sizes are

τi ∼
1

ai
ln

(

W0

Ai

)

. (3.5)

The cycle size goes logarathimically with W0, and so to trust the supergravity approxima-

tion W0 must be extremely small. We may usefully rephrase this condition. The KKLT

construction relies on nonperturbative corrections to the scalar potential dominating the

perturbative corrections. This is equivalent to the requirement that the ‘correction’ to the

superpotential is comparable to, or larger, than the tree-level term. In order for this to

hold at (moderately) large T , W0 must be very small, which is to be achieved by tuning

fluxes.

However, for almost all values of W0 (‘almost’ can be made precise as in [25]) there

exists no reliable regime in which this requirement is met. Perturbative corrections, orig-

inating from corrections to the Kähler potential, are then essential for the study of the

moduli potential. It was shown in [10, 11] that the incorporation of an α′3 correction to

the Kähler potential [26],

K = −2 ln(V) → K = −2 ln

(

V +
ξ

2g
3

2
s

)

, (3.6)

– 8 –



J
H
E
P
0
5
(
2
0
0
6
)
0
7
8

combined with the same nonperturbative superpotential corrections

W = W0 +
h1,1
∑

i=2

Aie
−aiTi ,

leads, subject to a necessary condition h2,1 > h1,1 > 1, to a minimum of the potential at

exponentially large volumes:

V ∼ W0e
c

gs ,

for a model-dependent constant c. This and other properties of the minimum follow from

an explicit study of the scalar potential, but a summary of the results is as follows:

1. The moduli divide into one large modulus τb and h1,1 − 1 small ‘blowup’ moduli τi.

Whereas the former is exponentially large, τb ∼ V 2

3 , the latter all have τi ∼ ln(V).

The origin of this is as follows. If we take τ
3

2

b ∼ V À 1 and fixed, the other moduli

τi minimise their potential at DTiW = 0 +O
(

1
V
)

. Neglecting numerical factors, this

generates an effective potential for V of

V ∼ −(lnV)
3

2

V3
+

ξ

g
3

2
s V3

,

where the ξ
V3 comes from the Kähler correction. V is then dynamically stabilised at

V À 1.

2. The stabilised volume is exponentially sensitive to the stabilised string coupling,

allowing a natural generation of hierarchies: the structure of the potential is such as

to create a hierarchical separation of the string and Planck scales.

The Kähler correction (3.6) — of course only one of many — plays an essential role

in this construction. The effects of other possible Kähler corrections, such as from warp-

ing effects or other IIB O(α′3) corrections, have been extensively discussed in [11] (see

also [28]). We will comment further on these in the appendix. Here we simply note that

the only hope of incorporating Kähler corrections in a controlled manner is via a small

expansion parameter. In this case V À 1 and the expansion parameter is 1
V . Of known

corrections, (3.6) gives the leading contribution to the scalar potential in the 1
V expansion.

Finally let us note that the two constructions above both give rise to AdS minima,

which are respectively supersymmetric and non-supersymetric. It is necessary to include

a phenomenological uplift term, arising from e.g. a D3-brane in a warped throat, in order

to match the observed cosmological constant. In the KKLT scenario, it is the uplift that

gives rise to soft supersymmetry breaking terms. For the exponentially large volume com-

pactifications, the supersymmetry breaking is inherited from the no-scale structure and the

effects of the uplift are subdominant [11, 29].

3.2 The simplest scenarios: why axions are heavy

We now turn to the axions. Our first point is that the simplest versions of the above

scenarios lack a QCD axion. All potential axions receive a high scale mass and thus cannot
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solve the strong CP problem. For simplicity we concentrate on the KKLT construction,

but a very similar argument holds for the exponentially large volume compactifications.

We start by asking whether QCD is to be realised on D3 or D7 branes. If we were to

use D3-branes, the QCD axion would be the imaginary component of the dilaton multiplet,

S = e−φ + ic0. However, as indicated in (3.3) this multiplet is stabilised at tree-level by

the fluxes, with a mass mS ∼ N
R6 MP , with R the radius in units of ls. This tree-level

stabilisation may seem at odds with the axionic shift symmetry c0 → c0 + 2π. However,

the shift symmetry is a subgroup of the fundamental SL(2, Z) symmetry, under which the

fluxes also transform. By nature a duality, this is invisible in the low-energy theory and

cannot protect the axion from acquiring a mass. As R . 5 in KKLT, the axion obtains

a mass mc0 & 1015 GeV and cannot be a QCD axion. For the exponentially large volume

compactifications, R is larger but the conclusion unchanged: QCD on a D3 brane stack is

inconsistent with the existence of a Peccei-Quinn axion.

This implies that QCD ought to be realised on D7 branes. The axions are now the

imaginary parts of the Kähler moduli, and the instanton effects used to stabilise these

moduli will also give the axions a mass. To estimate the scale of this mass, it is simplest

just to construct the potential explicitly.

As above, we take the superpotential

W = W0 +

h1,1
∑

i=1

Ai exp(−aiTi), (3.7)

with Kähler potential

K = −2 log V. (3.8)

Note that K = K(Ti + T̄i), and so the axions do not appear either in K or its derivatives.

The supergravity F-term potential is

V = eK(Kij̄DiWDj̄W̄ − 3|W |2). (3.9)

The no-scale property of the Kähler potential simplifies (3.9) to

V = eK
(

Kij̄∂iW∂j̄W̄ + Kij̄
(

(∂iK)W∂j̄W̄ + (∂īK)W̄∂jW
)

)

. (3.10)

It is a property of the Kähler potential (3.8) that Kij̄∂iK = −2τj. (3.10) becomes

V = eK
(

Kij̄aiaj

(

AiĀje
−aiTi−aj T̄j + ĀiAje

−aiT̄i−aj T̄j

)

−2aiτi

(

WĀie
−aiT̄i + W̄Aie

−aiTi

))

. (3.11)

It is easy to extract the axionic dependence of the potential (3.11). K and its derivatives

are all real and phases only come from the superpotential. The potential becomes

V = eK
(

Kij̄
(

2aiaj|AiAj |e−aiτi−ajτj cos(aiθi + ajθj + γij)
)

(3.12)

−4aiτi|W0Ai|e−aiτi cos(aiθi + βi) − 4aiτi|AiAj | cos(aiθi + ajθj + γij)
)

.
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θi denote the axions and the phases γij and βi come from the phases of AiĀj and ĀiW

respectively. The axionic mass matrix is

M2
ij =

∂2V

∂θi∂θj
, (3.13)

and we obtain4

M2
ij ∼ aiajVmin, (3.14)

with Vmin the magnitude of the potential at the AdS minimum. In KKLT, DTiW = 0 for

all i and Vmin ∼ −3 |W0|2
V2 . As there are h1,1 independent phases, there is no reason for M2

ij

to be degenerate and we expect all eigenvalues to be O(a2Vmin), where a is the typical

magnitude of the ai.

The determination of physical masses also requires the Kähler potential. In general

there is no explicit expression for the overall volume V in terms of 4-cycle volumes τi. The

Kähler metric may however be written as [17]

Kij̄ =
G−1

ij̄

V2
, Gij̄ = −3

2

(

kijkv
k

V − 3

2

kimntmtnkjpqt
ptq

V2

)

. (3.15)

If V ∼ (a few)l6s , Kij̄ ∼ O(1) and the mass matrix M2
ij gives a good estimate of the scale

of axion masses. If V À l6s , then Kij̄ ¿ O(1), and M2
ij underestimates the axion masses.

M2
ij could only overestimate the axion masses if V ¿ 1. This realm of moduli space is not

accessible in a controlled fashion and we do not concern ourselves with it.

In units where MP = 1, we therefore have

mτi ∼ mci ∼ ai

√

Vmin ∼ aiW0

V . (3.16)

The axion masses are consequently set by the value of the tree-level superpotential W0.

This also determines the vacuum energy and, implicitly, the energy scale of supersymmetry

breaking required to cancel the vacuum energy. TeV-scale soft terms require hierarchically

small W0. For the (gravity-mediated) case studied in [30], this required W0 ∼ 10−13, with

mτi ∼ mai ∼ m3/2 ∼ 10TeV. (3.17)

This scale is vastly greater than that associated with QCD instanton effects, and thus the

axions are incapable of solving the strong CP problem. We could insist on a QCD axion, and

require that W0 be sufficiently small that QCD instantons dominate over the D-instanton

effects of moduli stabilisation. This would require W0 ∼ 10−40. However, this scenario

is entirely excluded as the size moduli are light enough to violate fifth force experiments

and the susy breaking scale would be O(10−14eV). Consequently, in the simplest KKLT

scenario it is impossible to generate a QCD axion. The D3 axion receives a high scale mass

from fluxes, whereas the instanton effects give the D7 axions large masses comparable to

the size moduli.

4We emphasise this does not mean the mass matrix is M2 = a ⊗ a: simply that terms may receive an

enhance by factors appearing in the exponential.
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A similar argument holds for the exponentially large volume compactifications. As in

KKLT, the D3 axion receives a large flux-induced mass. The ‘small’ cycles are stabilised

by instanton effects, and these give the corresponding axions masses of a similar scale

to the size moduli, mai ∼ mτi ∼ m3/2. One difference is that there is a modulus, the

‘large’ modulus τb, which need not appear in the superpotential. It is stabilised through

the Kähler potential, and while it is massive its axionic partner indeed remains massless.

However, this cycle is exponentially large, and any gauge group supported on this cycle is

far too weakly coupled to be QCD. The same conclusion holds: the simplest version of this

scenario does not generate a QCD axion.

The above formulates the ‘modulus anti-stabilisation problem’: naive scenarios of mod-

uli stabilisation are incompatible with a QCD axion.

We next examine an apparent solution to this problem that in fact has a subtle flaw.

We want a way to stabilise moduli without stabilising the axions. Axions correspond to

phases in the superpotential and do not appear in the Kähler potential. If we included

a multi-exponential term e−αiTi in the superpotential, a massless axion would certainly

survive, as at least one phase would be absent. As the size moduli all appear in the Kähler

potential, by solving the F-term equations we may hope to stabilise the size moduli while

leaving the axions massless.

To illustrate this idea, let us consider a toy model,

K = − ln(T1 + T̄1) − ln(T2 + T̄2) − ln(T3 + T̄3), (3.18)

W = W0 + Ae−2π(T1+T2+T3). (3.19)

The Kähler potential (3.18) is that appropriate for toroidal orbifolds, with V = t1t2t3. To

understand where the superpotential could arise from, we can hypothesise that the cycle

(1+2+3) is the smallest cycle with only two fermionic zero modes, and that instantons

wrapping (for example) the cycle (2+3) all have more than two zero modes and do not ap-

pear in the superpotential. However, we are not here really concerned with the microscopic

origin of the superpotential: at this level we simply regard equations (3.18) and (3.19) as

defining the model.

The F-term equations DT1
W = DT2

W = DT3
W = 0 give

− 2πAe−2π(T1+T2+T3) − 1

T1 + T̄1
(W0 + Ae−2π(T1+T2+T3)) = 0, (3.20)

− 2πAe−2π(T1+T2+T3) − 1

T2 + T̄2
(W0 + Ae−2π(T1+T2+T3)) = 0, (3.21)

− 2πAe−2π(T1+T2+T3) − 1

T3 + T̄3
(W0 + Ae−2π(T1+T2+T3)) = 0. (3.22)

These immediately imply τ1 = τ2 = τ3 and equations (3.20) to (3.22) collapse to

2πAe−6πτ1e−2πi(θ1+θ2+θ3) +
1

2τ1
(W0 + Ae−6πτ1e−2πi(θ1+θ2+θ3)) = 0. (3.23)

While the sum θ1 + θ2 + θ3 is fixed, there are clearly two axionic directions not relevant

for the solution of the F-term equations. On the other hand, there is a unique value for
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the size moduli such that the F-term equations are solved. Except for the massless axionic

directions, the scales of the masses are unaltered from above, and we would expect

mτi ∼ mθ1+θ2+θ3
∼ W0

V , mθ1−θ2
= mθ1−θ3

= 0. (3.24)

As this is supergravity rather than rigid supersymmetry, there is no contradiction in having

a mass splitting for the multiplet in the presence of unbroken supersymmetry.

While this seems promising, there is in fact a serious problem with the above. Even

though all F-term equations can be solved, numerical investigation shows that at the su-

persymmetric locus the resulting scalar potential is tachyonic, with signature (+,−,−).

Although supersymmetry ensures the moduli are Breitenlohner-Freedman stable [31], this

notion of AdS stability ceases to be relevant after the (necessary) uplift.

We now show that these tachyons are in fact generic for any attempt to stabilise the

moduli supersymmetrically while preserving unfixed axions.

3.3 A no-go theorem

We suppose we have an arbitrary N = 1 supergravity with moduli fields, Φα, Tβ = τβ +ibβ,

where the bβ are the axions. We write the superpotential and Kähler potential as

W = W (Φα, Tβ), (3.25)

K = K(Φα, Tβ + T̄β). (3.26)

The Peccei-Quinn symmetry bβ → bβ + εβ implies the form of (3.26) should hold in per-

turbation theory.

We further suppose we have solved

DΦαW = 0 and DTβ
W = 0 (3.27)

for all α and β, but that at least one axion bu =
∑

β λβbβ is unfixed: the solution to (3.27)

is independent of 〈bu〉.
We redefine the basis of chiral superfields so that there exists a superfield Tu with

bu = Im(Tu),

T1 → Tu,

T2 → T2,

Tn → Tn. (3.28)

This is a good redefinition as it does not affect holomorphy properties.

As the solution to all F-term equations is independent of bu, bu is a flat direction of the

potential (3.9) at the supersymmetric locus.5 The potential at the supersymmetric locus

is given by

V = −3eK|W |2. (3.29)

As bu does not appear in K, it follows that if bu is a flat direction |W | must be independent

of bu. Up to one exception this then implies that W is independent of bu.

5The requirement of flatness is stronger than the requirement that the axion simply be massless. Flatness

is the right requirement, as if an axion is fixed in any way it does not solve strong CP.
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The sole exception is if bu purely represents an overall phase, i.e. W = e−aTu with

no constant term. In a IIB context, this may potentially arise if the flux superpotential

exactly vanishes due to a discrete symmetry [32], while a combination of non-perturbative

effects and Kähler corrections stabilise the Kähler moduli. While potentially interesting,

this is an exceptional case and we do not analyse it further.

If W has no explicit dependence on bu = Im(Tu), it follows by holomorphy that it also

has no explicit dependence on τu = Re(Tu) and hence on Tu. Therefore

∂TuW ≡ 0. (3.30)

However, as DTuW = 0, it follows that at the supersymmetric locus,

either (∂TuK) = 0 or W = 0.

The latter is overdetermined and non-generic, so we first focus on (∂TuK) = 0.

Direct calculation now shows that the τu direction is tachyonic at the supersymmetric

locus. To see this, note that from the scalar potential (3.9)

∂τuV = eKKij̄
(

∂τu(DiW )Dj̄W̄ + DiW∂τu(Dj̄W̄ )
)

− 3(∂τuK)eKWW̄. (3.31)

We have used ∂τuW ≡ 0 and have only kept terms that will give non-vanishing contributions

to ∂τu∂τuV at the supersymmetric locus. Expanding DiW and again using ∂τuW ≡ 0, (3.31)

simplifies to

∂τuV = eKKij̄
(

∂τu(∂iK)W (Dj̄W̄ ) + DiW∂τu(∂j̄K)W̄
)

− 3(∂τuK)eKWW̄. (3.32)

If we again only keep terms non-vanishing at the supersymmetric locus, the second deriva-

tive is

∂τu∂τuV = eKKij̄
(

2∂τu(∂iK)∂τu(∂j̄K)WW̄
)

− 3(∂τu∂τuK)eKWW̄. (3.33)

Now, as τu = 1
2 (Tu + T̄u),

∂τuK(T + T̄ ) = 2∂TuK(T + T̄ ),

and we have

∂τu∂τuV = 4eKWW̄ (2Kij̄KiuKuj̄ − 3Kuū)

= −4eKWW̄Kuū, (3.34)

where we have used Kij̄ = Kij . As Kij̄ is a metric, Kuū is positive definite and it follows

that the τu direction is tachyonic.

Now consider the W = 0 case. As indicated above, this is non-generic: even if W

originally vanishes, it is expected to receive non-perturbative corrections which make it

non-vanishing. Even so, it follows easily that

∂τu∂τuV = 0, (3.35)

and so the τu size modulus is massless, leading to unobserved fifth forces.
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The above gives a no-go theorem: there does not exist any supersymmetric minimum

of the F-term potential consistent with stabilised moduli and unfixed axions.

It is in the nature of no-go theorems that they admit loopholes, so let us discuss ways

around this result. One point to consider is the form of the Kähler potential, as we have

used in the above argument the fact that

K = K(T + T̄ ). (3.36)

While true in perturbation theory because of the axionic shift symmetry, this equation will

break down nonperturbatively, and the argument showing that the τu direction is tachyonic

will no longer hold. However, this same breakdown will cause K, and hence the potential V ,

to depend on the axion. As this lifts the required axionic flat direction, the no-go theorem

will cease to apply.

A second loophole is that although the F-term potential might be tachyonic, the D-

term potential might come to the rescue. For example, a Fayet-Iliopoulos term might have

exactly the right structure to render the supersymmetric locus an actual minimum of the

full potential. However this seems implausible in the presence of many tachyonic directions.

A similar approach would be to try and set W = 0 and then rely entirely on D-terms to

stabilise the moduli. Another possibility (discussed recently in [33]) is that an anomalous

U(1) might remove the tachyonic directions. While the massive gauge boson will eat the

axionic degree of freedom, an axionic direction may survive in the phase of a scalar charged

under the U(1).

A third loophole is that stability might not rely on the existence of an actual minimum

for the potential. Equation (3.34) involves the Kähler metric Kuū. The kinetic term for τu

is Kuū∂µτu∂µτu. If we just consider the τu direction, the physical mass is therefore

m2
τu

= −2eKWW̄ = −8

9
|mBF |2, (3.37)

where mBF is the relevant Breitenlohner-Freedman bound. As tachyonic modes can be

stable in AdS, one could argue that it is sufficient simply to solve the F-term equations

and not to worry about whether the resulting locus is an actual minimum of the potential.

While this point is more substantial, it does not resolve the problem. The real world is

not AdS, and for stability requires a positive definite mass matrix. For any realistic model,

the vacuum energy must be uplifted such that it vanishes. After this uplift, the extra

geometric advantages of AdS go away and the tachyons can no longer be supported. As

there may be many tachyons present — one for each massless axion — the entire problem

of moduli stabilisation must necessarily be solved over again in the uplifting. As the uplift

is generally the least controlled part of the procedure, this seems a hard problem. While

the uplift may remove the tachyons, at the present level of understanding this seems pure

hypothesis. It is then very unclear how useful the original supersymmetric AdS saddle

point is, and whether it is a suitable locus to uplift.

The argument above suggests that supersymmetric solutions are unpromising starting

points from which to address the strong CP problem. Either all moduli appear in the

superpotential, in which case there is no light axion, or a modulus is absent from the
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superpotential, in which case the potential is tachyonic. The fourth and most obvious

loophole is then to give up on the requirement of supersymmetric minima, and search for

nonsupersymmetric minima of the potential with massless axions.

We shall consider this point in the next section. Before we do so we also observe that

while our focus here is on axions, the argument above is also relevant for moduli stabilisa-

tion. For example, in the weakly coupled heterotic string, the one-loop corrections to the

gauge kinetic function (2.6) imply that gaugino condensation generates a superpotential

Wn.p. = Ae−αS+βiT
i
. (3.38)

It has been proposed to use the superpotential (3.38), together with a constant term W0,

to stabilise the dilaton and Kähler moduli by solving DSW = DT iW = 0. However,

there is only one phase — and hence only one axion — explicitly present in (3.38). The

above argument shows that the resulting scalar potential will actually be tachyonic at the

supersymmetric locus, with signature (+,−, . . . ,−).

A similar result will apply to the recent study of IIA flux compactifications with all

NSNS and RR fluxes turned on. In this context it is also found that the solution of the

F-term equations is independent of many of the axions present (those associated with

the C3 field). The above implies that as long as h2,1 6= 0 the supersymmetric locus is

always tachyonic, with one tachyon present for every massless axion. Tachyons have been

recognised in particular models [33, 34], but from the above they would seem to be very

generic.

3.4 Non-supersymmetric minima with massless axions

The above no-go theorem shows that supersymmetric moduli stabilisation is not a good

starting point from which to solve the strong CP problem. This implies we ought to

consider non-supersymmetric moduli stabilisation. That there is no no-go theorem for non-

supersymmetric minima with massless axions can be shown by construction: for example,

the exponentially large volume compactifications of [10, 11] all contain a massless axion

associated with the large cycle controlling the overall volume. As indicated above, this

cannot be a QCD axion, as any brane on this cycle is very weakly coupled. If we want

to try and force this cycle into being a QCD axion, we can tune the parameters to force

the minimum of this potential to relatively small volumes. That this is possible can be

confirmed numerically. Another possibility would be a purely perturbative stabilisation of

the volume modulus, solely using Kähler corrections (in which axions do not appear). This

has been discussed in [27, 28], although without an explicit example.

We shall not dwell on these possiblities. First, because the resulting axion decay

constant would be, as we shall see in section 4, close to the Planck scale and outside the

allowed window and secondly, because at such small volumes there is no good control

parameter. As we require non-supersymmetric minima we shall base our discussion around

the large-volume models of [10, 11]. For now we only discuss moduli stabilisation but in

section 4 we shall show that these can also realise phenomenological values for fa.
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We illustrate the discussion with a three-modulus toy model, in which we assume the

volume may be expressed in terms of 4-cycles as

V = (T1 + T̄1)
3

2 − (T2 + T̄2)
3

2 − (T3 + T̄3)
3

2 . (3.39)

We use three moduli as this turns out to be the minimal number required for our pur-

poses: clearly, this is no significant restriction. Expressed in terms of 2-cycles, (3.39)

corresponds to

V = λ(t31 − t32 − t33). (3.40)

We note (3.40) satisfies the requirement that ∂2V
∂ti∂tj

have signature (+,−,−). We may

perhaps think of this toy model as a P
3 with two points blown up. Denoting the cycles by

1, 2 and 3, the Kähler potential is

K = −2 ln
(

(T1 + T̄1)
3

2 − (T2 + T̄2)
3

2 − (T3 + T̄3)
3

2

)

− ξ

g
3/2
s V

, (3.41)

where we have included the leading large-volume behaviour of the α′3 correction of [26].

gs is fixed by the fluxes and in (3.41) should be regarded as a tunable parameter. For

superpotential, we shall take

W = W0 + e−
2π
n

(T2+T3). (3.42)

This could arise from gaugino condensation on a stack of n branes wrapping the combined

cycle 2+3.6 QCD will be realised as a stack of branes wrapping cycle 3.

In the limit V À 1 with τ2 and τ3 small, the leading functional form of the scalar

potential is (omitting numerical factors)

V =
(
√

τ2 +
√

τ3)e
− 2π

n
2(τ2+τ3)

V − (τ2 + τ3)e
− 2π

n
(τ2+τ3)

V2
+

ξ

g
3/2
s V3

. (3.43)

The minus sign in (3.43) arises from minimising the potential for the axion Im(T2 + T3).

The axions Im(T1) and Im(T2−T3) do not appear in (3.43) and are unfixed. By considering

the limit V → ∞, 2π(τ2+τ3)
n ∼ lnV, it follows that as V → ∞ the potential (3.43) goes to

zero from below. As by adjusting gs we can make the third term of (3.43) arbitrarily large,

we can ensure the potential remains positive until arbitrarily large volumes, and thus any

minimum will be at exponentially large volumes.

Is there a minimum? The potential is clearly symmetric under τ2 ↔ τ3, and the

potential restricted to the locus τ2 = τ3 indeed has a minimum at exponentially large

volumes. Because of the symmetry τ2 ↔ τ3, this ‘minimum’ is also a critical point of the

full potential. However, it is not a minimum of the full potential. At fixed τ2 + τ3 and

fixed V, (3.43) depends only on
√

τ2 +
√

τ3. For fixed τ2 + τ3, this is maximised at τ2 = τ3,

and the mode τ2 − τ3 is tachyonic at this locus. We have not investigated whether this

tachyon satisfies the Breitenlohner-Freedman bound for AdS stability. This is for the same

reasons as above: once we uplift, the geometric protection of AdS ceases to be relevant.

Consequently the fields in (3.43) run away either to τ2 = 0 or τ3 = 0, where one of the

blow-up cycles collapses.

6The use of gaugino condensation rather than instanton effects is necessary to ensure that the cycle 2+3

is large enough to contain QCD.
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This result shows that the above toy model does not, by itself, have a minimum of the

potential with a massless QCD axion. We may ask whether this is a feature of the geometric

details of the model — for example, whether a different choice of triple intersection form

in (3.40) would alter this result. We have investigated several other toy models without

finding a minimum, and while we have no proof we suspect none exists so long as the

Kähler potential is given by (3.41).

This is bad news, but it is controllable bad news. The instability above is very par-

ticular: there is no instability either for the overall volume or for the sum of the blow-up

volumes τ1 + τ2, but only for the difference τ1 − τ2. The effect of the instability is to drive

one of the blow-up cycles to collapse. Consequently, the instability can be cured by any

effect that becomes important at small cycle volume and prevents collapse.

For example, the addition of a term

1√
τ2V3

+
1√
τ3V3

(3.44)

to (3.43) would obviously stabilise the cycles τ2 and τ3 against collapse and generate a

minimum of the potential. As this term does not affect the argument that in the V → ∞
limit the potential approaches zero from below, the resulting minimum would still be at

exponentially large volume.

We discuss in greater detail in the appendix which Kähler corrections are and are not

allowed. For now we note that terms of the form (3.44) may be generated from a correction

to the Kähler potential,

K + δK = −2 ln(V) +
ε
√

τ2

V +
ε
√

τ3

V . (3.45)

For simplicity we have kept the τ2 ↔ τ3 symmetry. Such a correction is motivated by the

fact that it gives corrections to the Kähler metrics K22̄ and K33̄ suppressed by factors of

g2 for the field theory on the relevant cycle. More specifically,

K22̄ + δK22̄ =
3

2
√

2τ2V

(

1 − ε

12
√

2τ2

)

. (3.46)

As τ2 = 1
g2 for a brane wrapping the cycle 2, the correction is suppressed by g2.

The inverse metric involves an infinite series of terms diverging in the τ2 → 0 and

τ3 → 0 limit. For example,

K22̄ =
2
√

2τ2V
3

(

1 +
ε

12
√

2τ2

+
ε2

288τ2
2

+ · · ·
)

. (3.47)

This is easy to understand: at τ2 = ε
12

√
2
, the Kähler metric K22̄ goes to zero and the

inverse metric diverges. This divergence can be seen by resumming (3.47). In the physical

potential, this divergence will create a positive wall at finite values of τ2 and τ3. The

positivity can be seen from the fact that the divergence in K−1 will only appear in the

term

eKKij̄DiWDj̄W̄ , (3.48)

which is manifestly positive definite. Consequently the potential will diverge positively at

finite values of τ2 and τ3, and so a stable minimum must exist for both τ2 and τ3.
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We have now outlined, in the context of the scenario of [10, 11], a way to stabilise all

the size moduli while keeping a massless QCD axion left over. We would like cycle 3 to

support QCD: by adjusting ε, we can always make the correction (3.45) sufficiently large

to ensure that τ3 is stabilised with the correct size for QCD. For intermediate string scales,

this requires τ3 ∼ 10. As the actual correction would be very hard to calculate, at this

level we just adjust ε phenomenologically. Of course, the complexity of a real model is

much greater than that of (3.45). However we note again that, even though the corrections

cannot be calculated, our proposal for moduli stabilisation only requires that they exist

and come with the right sign to prevent collapse.

While the above has been with a toy example, the above approach will apply to any

model in which the moduli are stabilised along the lines of [10, 11]. Keeping an axion

massless introduces an instability causing a blow-up cycle to want to collapse. Kähler

corrections that become important at small volume can stabilise this cycle but will not

affect the overall structure of the potential, and in particular will not affect the stabilisation

of the volume at V À 1.

3.5 Higher instanton effects in the axion potential

We have given above a Kähler potential and superpotential that will stabilise the moduli

while containing a candidate QCD axion. The nonperturbative terms in the superpotential

are in general just the leading terms in an instanton expansion. Even though the higher

order terms may be highly suppressed and irrelevant to moduli stabilisation, they could

still lift the flat direction associated with the massless axion. Given that ΛQCD ¿ MP ,

even highly subleading terms could dominate over QCD instantons.

Let us estimate the general magnitude of such instanton effects. The magnitude of

brane instantons depends on the volumes of the cycles they can wrap. Generally there will

be many such cycles, whose sizes depend on the stabilised moduli, but minimally there

must always exist the cycle which support the QCD stack. It follows from the DBI action

that the gauge coupling for a D7-brane stack is

1

g2
=

Re(T )

2π
⇒ α−1 =

4π

g2
= 2Re(T ) = 2τ.

This defines the gauge coupling at the high scale where the effective field theory becomes

valid. When ms ∼ MP , this is in essence the string scale, but if ms ¿ MP , the difference

between mKK and ms become significant. It is a subtle issue whether ms or mKK is

the appropriate high scale. If QCD is supported on a small cycle within a large internal

space, the KK modes associated with the bulk will be uncharged under QCD and will not

contribute to the running coupling. KK modes of the QCD cycle will contribute, but these

will be at masses comparable to the string scale. In considering the running coupling, we

therefore use ms as the high scale rather than mKK. We consider a wide range of string

scales and take a sampling of high scale values from 108 → 1016 GeV. Given a string scale,

the internal volume is determined by ms ∼ MP√
V .

The QCD coupling runs logarithmically with energy scale, with

α−1
QCD(102 GeV) ∼ 9 and α−1

QCD(1016 GeV) ∼ 25.
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EUV 108 GeV 1010 GeV 1012 GeV 1014 GeV 1016 GeV

α−1
QCD(EUV) 15.8 18.1 20.4 22.7 25

Re(T) = α−1

2 7.9 9.1 10.2 11.4 12.5

e−2πT 2.8 × 10−22 1.5 × 10−25 1.5 × 10−28 7.8 × 10−32 7.8 × 10−35

e−4πT 7.7 × 10−44 2 × 10−50 2 × 10−56 6 × 10−63 6 × 10−69

Table 1: Cycle sizes and instanton amplitudes for various UV scales.

The required high-scale couplings and cycle sizes are given in table 1, together with the

action for a D3-brane instanton wrapping the same cycle as the QCD stack. Its magni-

tude is set by ∼ e−2πT and we show in table 1 the approximate magnitude of single- and

double-instanton effects. In addition to the QCD cycle, there may be other cycles which

instantons may wrap. We do not include these for two reasons: first, whether such instan-

tons would generate a potential for the QCD axion is model-dependent7, and secondly, we

can always arrange the model such that the QCD cycle is smallest and hence dominates

the instanton expansion. We observe that the magnitude of the required cycle volume,

and thus the magnitude of potential instanton effects, varies significantly with the string

scale. If present, such D-instantons would generate a potential for the QCD axion. To

compare their magnitude to that of QCD effects, we need an estimate of their contribu-

tion to the scalar potential. In this context we only care about terms containing a phase

and so contributing to the axion potential. To this end, the relevant term from the scalar

potential (3.10) is

Vaxion = eK
(

Kij̄
(

∂iW (∂j̄K)W̄ + c.c.
)

)

. (3.49)

A superpotential instanton contribution e−2πnTi generates a term

Vaxion =
−2aiτiW0

V2
e−2πnτi cos(θi). (3.50)

The absolute magnitude of (3.50) depends on the value of n, the internal volume V and

the tree-level superpotential W0. As we are looking towards phenomenology we also take

m3/2 = W0

V ∼ 1TeV ∼ 10−15MP , as appropriate for gravity-mediated TeV-scale soft terms.

Note that for models built around the KKLT scenario, we always have ms & MGUT and only

the largest value of EUV is achievable. In table 2 we give the internal volumes required

for each UV scale, as well as the resulting absolute magnitude of 1-,2- and 3-instanton

superpotential corrections to the scalar potential. For the same reasons as above, we only

consider instantons wrapping the QCD cycle.

As well as superpotential effects, there are also nonperturbative corrections to the

Kähler potential (the perturbative corrections to K do not have an axionic dependence).

While smaller, these are easier to generate — the instantons can have four fermionic zero

modes rather than only two. A correction

K = −2 ln(V) → K = −2 ln(V + e−2πnT ) (3.51)

7It seems odd that such instantons could affect the QCD axion at all. However, if QCD is on cycle 3,

and the axion b2 + b3 is fixed by effects on cycle 2+3, an instanton solely on cycle 2 effectively generates a

potential for the QCD axion.
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EUV 108 GeV 1010 GeV 1012 GeV 1014 GeV 1016 GeV

V 1020 1016 1012 108 104

V1-instanton 10−57M4
P 10−56M4

P 10−55M4
P 10−54M4

P 10−53M4
P

V2-instanton 10−79M4
P 10−81M4

P 10−83M4
P 10−85M4

P 10−87M4
P

V3-instanton 10−101M4
P 10−106M4

P 10−111M4
P 10−116M4

P 10−121M4
P

Table 2: Magnitude of axion potentials from superpotential instanton effects.

EUV 108 GeV 1010 GeV 1012 GeV 1014 GeV 1016 GeV

V 1020 1016 1012 108 104

V1-instanton 10−77M4
P 10−72M4

P 10−67M4
P 10−62M4

P 10−57M4
P

V2-instanton 10−99M4
P 10−97M4

P 10−95M4
P 10−93M4

P 10−91M4
P

V3-instanton 10−121M4
P 10−122M4

P 10−123M4
P 10−124M4

P 10−125M4
P

Table 3: Magnitude of axion potentials from Kähler potential instanton effects.

will generate effects in the scalar potential at order

VδK ∼ W 2
0

V3
e−2πnT .

and thus generate a potential for the QCD axion θ of the form

VδK cos(θ + α).

Again assuming TeV-scale (visible) SUSY breaking, W0

V ∼ 10−15, the magnitudes of such

effects are shown in table 3.

The axion potential originating from QCD effects and relevant to the strong CP prob-

lem is

VQCD ∼ Λ4
QCD(1 − cos(θ)),

with ΛQCD ∼ 2×10−19MP and Λ4
QCD ∼ 10−75M4

P . We require QCD effects to be sufficiently

dominant to be consistent with the failure to observe CP violation in strong interactions.

Suppose we have a potential

V = A(1 − cos(θ)) + ε cos(θ + γ). (3.52)

If A À ε, the minimum is displaced from θ = 0 by δθ ∼ ε
A . Observationally, |θ| < 10−10,

and thus non-QCD contributions must have absolute magnitude smaller than 10−85M4
P .

By comparison with tables 2 and 3 it follows that in order for QCD instantons to dominate

the axion potential, the single instanton corrections to both the superpotential and the

Kähler potential must be absent, while the 2-instanton superpotential correction may or

may not be present depending on factors of 2π and the precise value of the string scale.

To contribute to a superpotential (Kähler potential) an instanton must have at most 2

(4) fermionic zero modes, to generate
∫

d4xd2θ and
∫

d4xd2θd2θ̄ terms respectively. In the

absence of flux, there is a necessary condition on a divisor to generate a superpotential [24]:

it must have holomorphic Euler characteristic one, χg(D) = 1. In the presence of flux, this
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condition may be relaxed. The number of zero modes on an instanton, and thus its ability

to appear in either the Kähler or superpotential, may also be affected by the presence of

the stack of QCD branes wrapping the would-be instanton cycle. We shall not attempt

to analyse this question for specific ‘real’ models, but by fiat simply assume the necessary

instantons to be absent from the potential. In this regard it is encouraging that the number

of instantons required to be suppressed is quite limited.

4. The axion decay constant

4.1 Magnitude

The last section was devoted to solving the strong CP problem: keeping an axion light while

stabilising the moduli. However, even achieving this does not resolve all phenomenological

problems. Given that a QCD axion exists, as indicated in the introduction there are strong

bounds on the axion decay constant fa of equation (2.3): 109 GeV < fa < 1012 GeV. The

lower bound, from supernova cooling, is hard. While the upper bound may be relaxed by

considering non-standard cosmologies, here we shall also treat this as hard. We want to

estimate fa in some moduli stabilisation scenarios. In IIB compactifications, the axionic

coupling to QCD arises from the clean and model-independent Chern-Simons coupling.

However, to obtain the physical value of fa the axion must be canonically normalised.

This depends on the Kähler metric, and in particular on where the moduli are stabilised.

We assume we can write the Kähler potential as

K = K(Ti + T̄i), (4.1)

with K real. This is true in perturbation theory, owing to the axionic shift symmetry, and

any nonperturbative violations are small enough to be irrelevant for this purpose. In this

case the kinetic terms for the axionic and size moduli do not mix. Noting that Kij̄ = Kjī,

we have for any i and j

Kij̄(∂µT i∂µT̄ j) + Kjī(∂µT j∂µT̄ i) =

= Kij̄ ((∂µτi + i∂µci)(∂
µτj − i∂µcj) + (∂µτj + i∂µcj)(∂

µτi − i∂µci))

= Kij̄(2∂µτi∂
µτj + 2∂µci∂

µcj), (4.2)

and the two sets of terms decouple.

Let us first show that if both the overall volume and the cycle volumes are comparable

to the string scale, then as expected fa & 1016GeV. Suppose an axion ci is to be the QCD

axion. The Lagrangian for this axion is

Kīi∂µci∂
µci +

ci

4π

∫

F a ∧ F a. (4.3)

For simplicity we have not included mixing terms: these will not greatly affect the discus-

sion.
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The simplest toy model is that of a factorisable toroidal orientifold, with Kähler po-

tential

K = − ln
(

(T1 + T̄1)(T2 + T̄2)(T3 + T̄3)
)

= − ln(T1 + T̄1) − ln(T2 + T̄2) − ln(T3 + T̄3). (4.4)

and Kähler metric

Kij̄ =







(T1 + T̄1)
−2 0 0

0 (T2 + T̄2)
−2 0

0 0 (T3 + T̄3)
−2






. (4.5)

If we denote the axions by c1, c2 and c3, the axion kinetic terms are

1

4τ2
1

∂µc1∂
µc1 +

1

4τ2
2

∂µc2∂
µc2 +

1

4τ2
3

∂µc3∂
µc3. (4.6)

For definiteness, let us assume QCD is realised on cycle 1. There is no inter-axion mixing

and the relevant axion Lagrangian is

1

4τ2
1

∂µc1∂
µc1 +

c1

4π

∫

F a ∧ F a. (4.7)

If we canonically normalise c′1 = c1√
2τ1

, this becomes

1

2
∂µc′1∂

µc′1 +

√
2τ1

4π
c′1

∫

F a ∧ F a. (4.8)

In units where MP = 1, the axion decay constant is

fa =
1

4πτ1

√
2
.

If QCD is to be realised on this cycle, we need τ1 ∼ 12, and thus fa ∼ 1016 GeV. Going

beyond this toy example, we recall that in general the Kähler metric was given by (3.15),

Kij̄ =
G−1

ij̄

V2
, Gij̄ = −3

2

(

kijkt
k

V − 3

2

kimntmtnkjpqt
ptq

V2

)

. (4.9)

If all cycles are string scale in magnitude, then Kij̄ ∼ O(1) and it is impossible to lower the

axion decay constant substantially through canonical normalisation. The same conclusion

applies: fa & 1016 GeV. This conclusion is unsuprising: the axionic coupling to matter is

a stringy coupling, and so we expect fa to be comparable to the string scale. If the string

and Planck scales are identical, fa cannot lie within the allowed window.

If we lower the string scale, phenomenological values for fa can be achieved. To analyse

this, let us return to the toy model of (3.39). We recall the Kähler potential was

K = −2 ln
(

(T1 + T̄1)
3

2 − (T2 + T̄2)
3

2 − (T3 + T̄3)
3

2

)

. (4.10)
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The Kähler metric for this model is

Kij̄ =













−3
2
√

2τ1V + 9τ1
V2 − 9

√
τ2

2V5/3
− 9

√
τ3

2V5/3

− 9
√

τ2
2V5/3

3
2
√

2τ2V + 9τ2
V2

9
√

τ2τ3
V2

− 9
√

τ3
2V5/3

9
√

τ2τ3
V2

3
2
√

2τ3V + 9τ3
V2













. (4.11)

The axion kinetic terms are Kij̄∂µci∂
µcj . At small volumes there is substantial mixing

between the axions c1, c2 and c3. However, in the limit V → ∞ with τ1 À τ2, τ3, the

Kähler metric takes the schematic form

Kij̄ ∼







V−4/3 V−5/3 V−5/3

V−5/3 V−1 V−2

V−5/3 V−2 V−1






, (4.12)

and is to a good approximation diagonal. The requirement τ1 À 1 implies that QCD

cannot be realised on branes wrapping cycle 1, as the resulting field theory is far too

weakly coupled. However, if τ2 ∼ τ3 ∼ 10 we may realise QCD by wrapping branes on one

of these cycles. The resulting axion decay constant is

fa ∼
√

K33̄

4π
MP ∼ O(1)

4π
√
V

MP . (4.13)

Thus if V ∼ 1014 and τ3 ∼ 10, the QCD gauge coupling is correct and the axion decay

constant fa ∼ 1010 GeV lies within the narrow phenomenological window. Up to O(1)

factors, the string and Planck scales are related by

ms =
gsMP√

V
. (4.14)

Such a large volume corresponds to lowering the string scale to ms ∼ 1011 GeV. The

lowered axion decay constant is easy to understand physically. fa measures the axion-

matter coupling, which is an effect localised around the small QCD cycle. Thus the only

scale it is sensitive to is the string scale, and so up to numerical factors fa ∼ ms.

The above is a very particular limit of moduli space, with one cycle taken extremely

large while all others are only marginally larger than the string scale. It would thus be

essentially a curiosity if it were not also the exact regime in which the moduli are stabilised

in the compactifications of [10, 11] reviewed above. As the stabilised volume is exponentially

sensitive to the stabilised dilaton, a priori the string scale can lie anywhere between the

Planck and TeV scales. There is no difficulty, and no fine-tuning, in stabilising the volume

so as to achieve an intermediate string scale.

The above result on fa is independent of whether an axion remains massless or not.

As described in section 3.2, the simplest version of the scenarios of [10, 11] makes all axions

far too heavy to solve the strong CP problem. In sections 3.4 and 3.5 we have described

the necessary modifications to this scenario such that a massless QCD axion will survive
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to solve the strong CP problem. Combining this with the above, we have for the first

time given a procedure to stabilise all moduli while ensuring a QCD axion exists with a

phenomenologically allowed value for fa.

In itself this is interesting, as axions within the phenomenological window have al-

ways been hard to achieve in string compactifications. However, this scenario compels a

further very interesting relationship between the axion decay constant and the (visible)

supersymmetry breaking scale.

4.2 Relation to supersymmetry breaking scale

We argued earlier that if a QCD axion is to be present in IIB flux compactifications,

QCD must be realised on a stack of D7-branes. We have also described how to stabilise

the moduli such that a QCD axion can exist with a phenomenologically allowed decay

constant.

By definition, any scenario of moduli stabilisation determines the moduli vevs and

masses. However, in general much more information can be extracted. If the moduli

potential breaks supersymmetry, it will generate soft supersymmetry breaking terms in

the visible sector. In gravity-mediated scenarios, it is these that dominate the soft MSSM

Lagrangian. It is an old and important problem to go from the moduli potential to the

soft terms. The analysis of this problem was initiated in the heterotic string. As full

moduli stabilisation in that context is hard, the relevant moduli potential was unknown.

Progress was nonetheless achieved by parametrising supersymmetry breaking as S,T or

U-dominated, depending on the moduli multiplet (dilaton, Kähler or complex structure)

in which the dominant F-term occurred. This allowed a classification of supersymmetry

breaking possibilities even in the absence of a full moduli potential.

This question has now been revisited in IIB flux compactifications, where the moduli

potential is under better control and full stabilisation is achievable (at least at the level

of effective field theory). Instead of having to assume the structure of the F-terms, they

may now be computed directly from the moduli potential. However, the problem is still

subtle as the vacuum is originally AdS and the form of the (necessary) uplift to Minkowksi

space can introduce extra contributions to the F-terms. In the KKLT scenario, the AdS

minimum is supersymmetric and all details of the supersymmetry breaking therefore lie in

the uplift. Unfortunately this is the part of the construction under least control. Using

some particular assumptions about the uplift potential, (gravity-mediated) supersymmetry

breaking in this scenario has been studied in [30].

For the exponentially large volume compactifications, the structure of supersymmetry

breaking has been studied in [11, 29]. The original AdS minimum is non-supersymmetric,

and the structure of the F-terms is essentially inherited from the no-scale potential of [21].

While the uplift is again not well controlled, fortunately its effects are subdominant. This

arises because the magnitude of the vacuum energy in the AdS minimum is O
(

1
V3

)

, whereas

from the F-terms it ‘ought’ to be O
(

1
V2

)

, the difference of course being accounted for by

the no-scale cancellation. This implies that ‘extra’ F-terms required to lift the minimum

to Minkowski space will be hierarchically smaller than those already present in the AdS

minimum.
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No-scale breaking corresponds to Kähler-domination, with the dominant F-term as-

sociated with the multiplet controlling the overall volume [11]. The structure of the soft

terms on D7-branes for the no-scale models of [21] has been well-studied. Supersymmetry

breaking is transmitted to the observable sector through gravitational interactions, and the

3-form fluxes present induce soft terms on the worldvolume theory of the D7 branes [36, 37].

Here we are only concerned with the results rather than the calculational details: the scalar

and gaugino masses are found to be

mD7 ∼ MD7 ∼ m3/2 = eK/2W ∼ MP

V . (4.15)

If the internal volume V is exponentially large, it is the prime determinant of the scale of

the soft terms. Other, more model-dependent, factors will also be present, but these will

only be O(1) effects relevant for the detailed structure but not the overall scale. As the

volume also sets the scale of the axion decay constant, this implies a numerical relationship

between these two quantities. From the fact that

fa ∼ MP√
V

and msoft ∼
MP

V ,

it follows that up to numerical factors

fa =
√

MP msoft. (4.16)

Thus in such models the axion decay constant is compelled to be the geometric mean of the

Planck scale and the (visible) supersymmetry breaking scale. This is a striking result, as

the two pieces of physics are a priori entirely unrelated. The origin of this can be traced to

the intermediate string scale, which has been argued to have interesting phenomenological

properties [38].

5. Conclusions

The purpose of this paper has been to investigate the conditions under which a QCD

axion, ideally with a phenomenological value for fa, may coexist with stabilised moduli

in string compactifications. This divides into two questions: first, how to stabilise the

moduli such that a massless axion survives, and secondly, how to obtain allowed values of

fa, 109 GeV < fa < 1012 GeV.

In the context of the first question, we have shown that the simplest version of many

moduli stabilisation scenarios do not contain any light axions. We also have a negative

result, in that supersymmetric moduli stabilisation is disfavoured: there exist no supersym-

metric minima of the F-term potential with flat axionic directions. Even if AdS stability is

present due to the Breitenlohner-Freedman bound, the tachyons must be removed by the

time we are in Minkowski space. Performing this step requires a much greater technical

understanding of uplifting AdS vacua to Minkowksi space than is currently available, and

so it is unclear how relevant the original supersymmetric AdS solution is.

This result is pure N = 1 supergravity and so makes no assumptions about the particu-

lar string model considered. It thus applies to all string compactifications, and in particular
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shows that in many of the supersymmetric IIA flux compactifications considered recently

the complex structure moduli sector is heavily tachyonic.

There is no no-go theorem on nonsupersymmetric minima with massless axions, and

so these may be preferred. In the context of the large volume compactifications of [10, 11],

we outlined how to stabilise moduli while keeping axions massless. Here we had to rely

on Kähler corrections that will become important as a cycle collapses to zero size. While

unfortunately not much is known about these, our main requirement was simply that

they exist. Clearly progress in determining the form of such corrections would be very

interesting. We also specified the extent to which subleading higher-order instantons must

be absent in order for a leading-order axion to solve the strong CP problem.

We note this result also favours gravity-mediated supersymmetry breaking. If the

moduli potential must break supersymmetry in order to solve the strong CP problem, then

this suggests that supersymmetry should be broken at the string scale. Gravity mediation

therefore always contributes to the visible soft terms and, unless the string scale is lowered

to O(1000TeV), will dominate over gauge mediated effects. An intermediate string scale

may then be preferred in order to obtain TeV-scale soft terms.

In the context of the second question, the fact that fa is hierarchically lower than the

Planck scale implies that compactifications with ms ∼ MP are unlikely to give allowed

values for fa. In the compactifications of [10, 11] the string scale is hierarchically lower

than the Planck scale. In these models, fa ∼ Ms and MSUSY ∼ M2
s

MP
. An intermediate

string scale therefore gives both 109 GeV < fa < 1012 GeV and visible susy breaking at

O(1TeV). It is hard to find models with phenomenological values for fa, and so it is very

interesting that in the above model this also implies TeV-scale supersymmetry breaking.

We also emphasise that as very large volumes arise naturally in this model there is no

fine-tuning problem in having mSUSY ∼ O(1TeV).

Moduli stabilisation and the landscape have received much discussion recently. Techni-

cally, the landscape large numbers of O(10500) arise from the very many ways of stabilising

moduli. It is clearly necessary to find a handle for dealing with such numbers. One devel-

oped approach is statistical ([39] and references thereto). Without explicitly constructing

examples of vacua, this aims at framing and answering questions about what is and what

is not possible. However, it may be very difficult to identify the right vacuum: it has been

recently argued that the problem of finding a vacuum with the right cosmological constant

is NP hard [40].

A more general point argued here is that in the context of the landscape the strong CP

problem may serve as an experimentum crucis. Assuming that the solution to the strong

CP problem is a Peccei-Quinn axion and that string theory is a correct description of na-

ture, this is a solution that is extremely sensitive to the physics of moduli stabilisation.

Requiring an axion to remain (essentially) massless while all other moduli are stabilised

is a technically clean problem directly addressing the issue of vacuum selection. Indeed,

as seen above imposing this requirement directly rules out many scenarios of moduli sta-

bilisation. The further condition 109 GeV < fa < 1012 GeV is even more constraining:

we have described one approach to this above and it would be very interesting to analyse

others.
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A. Constraining corrections to the Kähler potential

Here I discuss how to constrain the form of corrections to the Kähler potential. The

tree-level Kähler potential used for our toy model was

K = −2 ln
(

(T1 + T̄1)
3/2 − (T2 + T̄2)

3/2 − (T3 + T̄3)
3/2

)

. (A.1)

This geometry has one overall Kähler mode (T1) and two blow-ups (T2 and T3). We

specialise to our limit of interest τ1 À τ2, τ3 > 1, with τi = Re(Ti), where the resulting

Kähler metric has the form (neglecting terms subleading in V)

Kij̄ =











3
V4/3

− 9
√

τ2
2V5/3

− 9
√

τ3
2V5/3

− 9
√

τ2
2V5/3

3
2
√

2τ2V
9
√

τ2τ3
V2

− 9
√

τ3
2V5/3

9
√

τ2τ3
V2

3
2
√

2τ3V











. (A.2)

Any correction to the Kähler potential will also generate corrections to the Kähler met-

ric (A.2). As such corrections are perturbative, they may arise either from α′ effects or

loop effects. On physical grounds, we expect that such corrections will be subdominant to

the tree-level metric in the regime — large overall volume, large cycle volumes and weak

coupling — where both worldsheet and quantum corrections ought to be least important.

We can apply this condition to restrict the form of potential corrections to K. For

example, consider the possible correction

K + δK = −2 ln(V) +
ε
√

2τ2

Vα
, (A.3)

with 0 < α < 1. The 22̄ component of the corrected Kähler metric is

K22̄ + δK22̄ =
3

2
√

2τ2V
− ε

8
√

2τ
3/2
2 Vα

. (A.4)

As α < 1, the correction to the kinetic term would always dominate the tree-level term

in the limit V À 1. This seems implausible as a large-volume limit ought to make the

correction less, rather than more, important.

A similar comment applies to a correction

K + δK = −2 ln(V) +
ετ2

2

V , (A.5)
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which leads to

K22̄ + δK22̄ =
3

2
√

2τ2V
+

ε

4V . (A.6)

In this case, as we take τ2 large, the correction becomes increasingly dominant over the

tree-level term. Given that large τ2 reduces both the curvature of this cycle and the gauge

coupling on any brane wrapping it, we would again expect exactly opposite behaviour to

occur.

Finally, we could also consider the correction

K + δK = −2 ln(V) +
2ετ2

Vα
, (A.7)

with 0 < α < 1. In this case δK22̄ is subleading to K22̄ in the classical limit. However, if

we consider the 12̄ component we now have

K12̄ + δK12̄ = − 9
√

τ2

2V5/3
+

3ε

2Vα+2/3
, (A.8)

and the correction again dominates in the large-volume limit.

The correction used in the body of the paper,

K + δK = −2 ln(V) +
ε
√

τ2

V +
ε
√

τ2

V , (A.9)

does not suffer from the above problems. As a correction to the Kähler metric, it gives

K22̄ + δK22̄ =
3

2
√

2τ2V
− ε

16τ
3/2
2 V

, (A.10)

K33̄ + δK33̄ =
3

2
√

2τ3V
− ε

16τ
3/2
3 V

. (A.11)

Such corrections are suppressed compared to the tree-level term by a factor τ−1, i.e. g2 of

the field theory on the brane. Unlike those considered above, these corrections are well-

behaved (i.e. subdominant) in the classical limit, and there does not exist a ‘bad’ scaling

limit.

We note that for the case where Kähler corrections have been computed [41], the

correction does fall into this form. We only focus on the Kähler moduli dependence: the

full expressions can be found in [41]. The correction gives

K + δK = − ln(T1 + T̄1) − ln(T2 + T̄2) − ln(T2 + T̄3) +

3
∑

i=1

εi

Ti + T̄i
, (A.12)

with for example

K11̄ + δK11̄ =
1

4τ2
1

+
ε1

4τ3
1

. (A.13)

The loop-corrected Kähler metric is suppressed by a factor τ−1
1 = g2.

The point of this discussion is that the form of possible corrections to the Kähler

potential can be heavily constrained by the reasonable requirement that in a classical (large
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volume, weak coupling) limit, corrections to the metric become increasingly subdominant

to tree-level terms: simply because Kähler corrections are very hard to calculate does not

make us entirely ignorant of their form. In particular, denoting the ‘small’, blow-up moduli

by τi, these considerations exclude corrections of the form

K + δK = −2 ln(V) +
f(τi)

Vα
, (A.14)

with α < 1, as in a classical, large volume limit there will be metric components whose

correction dominates the tree-level term.

This motivates our use of the correction (A.9): it comes from a reasonable assumption

about the form of the corrections to the Kähler metric, and is consistently subdominant in

the classical limit.
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